meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
courses:ct50aj100:start [2011/01/07 11:39]
kyrki
courses:ct50aj100:start [2011/09/02 12:04] (current)
Line 4: Line 4:
  
   - [[courses:​ct50aj100:​introduction|Introduction]]   - [[courses:​ct50aj100:​introduction|Introduction]]
-  ​- [[courses:​ct50aj100:​distributions|Distributions ​and linear ​regression]] +    * Ville 
-  - [[courses:​ct50aj100:​gaussianprocesses|Gaussian processes]]+  ​- [[courses:​ct50aj100:​distributions|Distributions]] 
 +    * Ville 
 +  - [[courses:​ct50aj100:​linearregression|Linear ​regression]] 
 +    * Ville 
 +  - [[courses:​ct50aj100:​linearclassification|Linear models for classification]] 
 +    * Ville 
 +  - [[courses:​ct50aj100:​gaussianprocesses|Gaussian processes ​for regression]] 
 +    * Isambi 
 +  - [[courses:​ct50aj100:​gpclassification|Gaussian processes for classification]] 
 +    * Zubeda
   - [[courses:​ct50aj100:​rvm|Relevance vector machines]]   - [[courses:​ct50aj100:​rvm|Relevance vector machines]]
 +    * Jukka
   - [[courses:​ct50aj100:​bayesnets|Bayes networks]]   - [[courses:​ct50aj100:​bayesnets|Bayes networks]]
-    - [[courses:​ct50aj100:​bninference|Inference]] +    ​* Natalia 
-    - [[courses:​ct50aj100:​apprinference|Approximate inference]]+  ​- [[courses:​ct50aj100:​bninference|BN Inference]] 
 +    ​* Janne 
 +  ​- [[courses:​ct50aj100:​apprinference|BN Approximate inference]] 
 +    * Idrissa
   - [[courses:​ct50aj100:​contlatent|Continuous latent variables]]   - [[courses:​ct50aj100:​contlatent|Continuous latent variables]]
 +    * Adam
 +
 +===== Seminar lectures and exercises =====
 +
 +Each student leads the discussion on a single topic. Be prepared to give a 60 minute lecture/​seminar presentation and spend 30 minutes for discussion and questions.
 +
 +Give your slides to Ville before the lecture so that they can be made available to others.
 +
 +Prepare also 1-3 exercise tasks for other students as well as model solutions to them. These tasks should give some hands on experience of the machine learning approach in question. ​
 +
 +If you need any material, hints, or help in preparing the presentation or the exercise tasks, please contact Ville as early as possible.
 +
 +