Case Study: BitTorrent



BitTorrent (protocol version 1.0)

File transfer protocol

Novel techniques for distributing content
P2P system studied further

The original design

Later enchantments are not discussed here



BT is a file transfer protocol for content distribution
Protocol specifications v1.0 studied here

A centralised P2P system (compare to Napster)
A tracker server managing users' downloads

BitTorrent concentrates on efficient file transfer

Searching content 1s not provided by the protocol
specification, but out-of-band methods

Addresses the free riding problem 1n P2P file sharing



Torrent

Set of peers cooperating to download the same content
using BT protocol

Tracker

Centralised server keeping track of current participants.
Does not involve to data transfers, but collect statistics

Pieces and blocks

File 1s cut into fixed size pieces (typically 256 KB) and
pieces are further cut into blocks (transfer unit, 16 KB)



Metainfo ftile, or .torrent file

Contains information about the file, its length, name and
the address and port of the tracker

Hashes for pieces of files for verification
Interested and Choked

A 1s marked as interested in peer B when B has pieces
that A wants, and vice versa. Also, A 1s choked, when B
decides not to upload data when A 1s interested. When B
1s willing to upload again, A 1s unchoked.



Peer set or a swarm

The group of machines that are collectively connected
for a particular file, 1.e. a list of open TCP connections

I.eecher and seed

Leecher 1s a peer that 1s still downloading the pieces.
Seed 1s a peer holding the complete file for uploading

Choking algorithms

Strategy to select which peers to choke and which to
unchoke — tit-for-tat algorithm



A static file with the extension .forrent put on a web
server

How to contact tracker and needed metadata for the file
Trackers responsible for helping peers to download

Very simple negotiation protocol on top of HTTP
Peer asks information about other peers for a file
Tracker replies with a list of other peers (e.g. 50 peers)

Initial seed (a complete copy) must be available



Peers maintain a list of pieces they are holding
Exchange and update the lists after the handshake

Continuously download blocks from connected peers
which have wanted pieces and allow download

Two or more blocks assembled to a piece and verified

As transferring continues, peers have more and more
pieces and can provide more aggregate upload
capacity



BitTorrent Deployment

The tracker is on the centre

Peers asks about other peers
involved to the distribution of file
stated in .torrent file

Peers with common interest form a
swarm, or a peer set

Transfer happens directly between
peers according to downloading
strategies (discussed later)

[http://www.bittorrent.org/introduction.htmil]



In a typical deployment, the number of leechers increases very rapidly after
the file 1s made available. The peak of leechers passes as they complete and

leave. It eventually peaks and then falls off at a roughly exponential rate.

The number of seeders increases slowly, peaks some time after the number

of leechers does, then also falls off exponentially. The exponential falloff of

both reflects the rate of new downloaders joining after the initial rush 1s

OVCI.

Torrent usspe

a " 1 1
2a00d 2 2a0d fraaltli ] b i 2503 fras i ] et P c] 2503
1400 18 o5 ] = o 15 10:Fh 1d 25 1R:AF 135 mn

[Bram Cohen, Incentives Build Robustness in BitTorrent]



When data is being transterred, downloaders should
keep several piece requests queued up at once in
order to get good TCP performance

On the other side, requests which can't be written
out to the TCP buffer immediately should be queued

up in memory rather than kept in an application-
level network buffer, so they can all be thrown out
when a choke happens.



Performance depends highly on how the pieces are
distributed

End up with pieces which are currently on offer?

Initial seeder leaves and no one fetched the end part?
Strict policy

Once a block has been requested, all block from that
piece must be fetched before requesting from another

piece

Getting complete pieces as quickly as possible



Rarest first: select piece which peers have least

Makes sure that peers have pieces which all of their peers
want, so uploading can be done when wanted

Avoiding the risk that initial seed 1s removed before
other seed are available and rare pieces are not found

Random first piece

Exception to the rarest first when download started

Pick the first randomly to get it faster than a rare piece



Requested piece from a peer with slow transfer rate
Potentially delays the finishing of download
Endgame mode: Finish download quickly

Send requests for blocks of the final piece to all peers

Cancels sent for arrived blocks to prevent wasting too
much bandwidth on redundant sends

In practise, endgame period i1s very short, not wasting too
much bandwidth, and file 1s finished quickly



Peers try to download whoever they can and decide
which peers upload to via tit-for-tat algorithm

To cooperate, peers upload, and not to cooperate, they
“choke” peers

“If peers stop cooperating, I will not cooperate and if
peer cooperates, I will cooperate”

Always start 1n cooperating mode

Ensuring that peers need to upload to 1n order to be
able to download: both receive benefit



No central resource allocation

Each peer 1s responsible for maximising its own
download rate

Why choke peers?

TCP congestion control behaves very poorly when
sending over many connections at once

Choking lets each peer use a tit-for-tat algorithm to
ensure that they get a consistent download rate



Always unchoke a fixed number of peers (e.g. 4)

How to select peers to unchoke 1n order to maximise
transter performance’?

Based strictly on current download rate

For meaningful rate, use a rolling average (20 seconds)
Avoid “fibrillation”

Choking and unchoking quickly wastes resources

Recalculate new unchokes at 10 seconds intervals



How to discover if currently unused connections are
better than the ones being used?

At any one time there 1s a single peer which 1s
unchoked regardless of it's upload rate

Which peer 1s optimistically unchoked rotates every
30 seconds

New connections are three times as likely to start as
the current optimistic unchoke as anywhere else in
the rotation



Occasionally a peer will be choked by all peers which
it was formerly downloading from

Peer will usually continue to get poor download rates until
the optimistic unchoke finds better peers

When over a minute goes by without getting a single
piece from a particular peer, assume being “snubbed”

Don't upload to that peer except as an optimistic unchoke

Frequently results in more than one concurrent
optimistic unchoke: download rates recover quickly



Once peer has completed downloading, unchoke
selection 1s based on the upload rates

Utilising all available upload capacity

Preferring peers no one else seems to be uploading at the
moment

For efficient and fair BT usage, participants are
often advised to keep it running awhile after
finishing download



Proved to work quite well

Very popular, claimed to account majority of the current
P2P traffic and a considerable part of Internet traffic

End of 2004 BT accounting 30% of all Internet traffic
according to Cache Logic (http://www.cachelogic.com/)

Demands that all users participate in the P2P spirit
Tit-for-tat strategy favours cooperating peers
Centralising involves only the tracker

Anyone can set up their own


http://www.cachelogic.com/

Does not provide any search mechanism for content

Have to find the .torrent file

Many web pages provide indexes and search engines

Peers often have little incentive to stay seeders

Torrent swarms gradually die out

Typical BitTorrent ¢

to very high speeds and t

own

load will gradually ramp up
hen slowly ramp back

down toward the end of the download



What makes BitTorrent such a successful network?

BitTorrent and content

Trackers don't host files, but still enable the downloads
The infamous Pirate Bay BitTorrent tracker site

On the other hand, often used for distribute open source,
like Linux ISO 1mages (can be multiple CDs)



